Einfach Gleitender Durchschnitt Nach Prognose Nachfrage

Ein einfacher gleitender Durchschnitt (SMA) Ein einfacher gleitender Durchschnitt (SMA) ist ein arithmetischer gleitender Durchschnitt, der berechnet wird, indem der Schlusskurs der Sicherheit für eine Anzahl von Zeitperioden addiert wird und dann diese Gesamtzahl durch die Anzahl der Zeit dividiert wird Zeiträume. Wie in der obigen Grafik gezeigt, beobachten viele Händler kurzfristige Durchschnittswerte, um längerfristige Durchschnittswerte zu überschreiten, um den Beginn eines Aufwärtstrends zu signalisieren. Kurzzeitmittel können als Stufen der Unterstützung zu handeln, wenn der Preis erlebt ein Pullback. Laden des Players. BREAKING DOWN Einfacher gleitender Durchschnitt - SMA Ein einfacher gleitender Durchschnitt ist anpassbar, indem er für eine unterschiedliche Anzahl von Zeitperioden berechnet werden kann, indem einfach der Schlusskurs des Wertpapiers für eine Anzahl von Zeitperioden addiert wird und dann diese Summe durch die Zahl dividiert wird Von Zeiträumen, die den durchschnittlichen Preis der Sicherheit über den Zeitraum gibt. Ein einfacher gleitender Durchschnitt glättet die Volatilität und macht es einfacher, die Preisentwicklung eines Wertpapiers zu sehen. Wenn der einfache gleitende Durchschnitt nach oben zeigt, bedeutet dies, dass der Sicherheitspreis steigt. Wenn es nach unten zeigt, bedeutet dies, dass der Sicherheitspreis sinkt. Je länger der Zeitrahmen für den gleitenden Durchschnitt, desto glatter der einfache gleitende Durchschnitt. Ein kürzerer bewegter Durchschnitt ist volatiler, aber sein Messwert ist näher an den Quelldaten. Analytische Bedeutung Die gleitenden Durchschnitte sind ein wichtiges analytisches Instrument, um aktuelle Preisentwicklungen und das Potenzial für eine Veränderung eines etablierten Trends zu identifizieren. Die einfachste Form der Verwendung eines einfachen gleitenden Durchschnitt in der Analyse ist es, schnell zu identifizieren, ob eine Sicherheit in einem Aufwärtstrend oder Abwärtstrend ist. Ein weiteres populäres, wenn auch etwas komplexeres analytisches Werkzeug, besteht darin, ein Paar einfacher gleitender Durchschnitte mit jeweils unterschiedlichen Zeitrahmen zu vergleichen. Liegt ein kürzerer einfacher gleitender Durchschnitt über einem längerfristigen Durchschnitt, wird ein Aufwärtstrend erwartet. Auf der anderen Seite signalisiert ein langfristiger Durchschnitt über einem kürzerfristigen Durchschnitt eine Abwärtsbewegung im Trend. Beliebte Trading-Muster Zwei beliebte Trading-Muster, die einfache gleitende Durchschnitte verwenden, schließen das Todeskreuz und ein goldenes Kreuz ein. Ein Todeskreuz tritt auf, wenn die 50-tägige einfache gleitende Durchschnitt unter dem 200-Tage gleitenden Durchschnitt kreuzt. Dies wird als bärisch signalisiert, dass weitere Verluste auf Lager sind. Das goldene Kreuz tritt auf, wenn ein kurzfristiger gleitender Durchschnitt über einen langfristigen gleitenden Durchschnitt bricht. Verstärkt durch hohe Handelsvolumina, kann dies signalisieren, weitere Gewinne sind in store. FORECASTING Saisonfaktor - der Prozentsatz der durchschnittlichen vierteljährlichen Nachfrage, die in jedem Quartal auftritt. Die jährliche Prognose für das Jahr 4 wird auf 400 Einheiten prognostiziert. Durchschnittliche Prognose pro Quartal ist 4004 100 Einheiten. Vierteljährliche Vorhersage Durchschn. Prognostiziert saisonale Faktor. Kausale Vorhersagemethoden Kausale Prognosemethoden basieren auf einer bekannten oder wahrgenommenen Beziehung zwischen dem zu prognostizierenden Faktor und anderen externen oder internen Faktoren 1. Regression: Die mathematische Gleichung bezieht sich auf eine abhängige Variable auf eine oder mehrere unabhängige Variablen, von denen angenommen wird, dass sie die abhängige Variable beeinflussen 2. ökonometrische Modelle: System von interdependenten Regressionsgleichungen, die einen Wirtschaftszweig beschreiben 3. Input-Output-Modelle: beschreibt die Ströme von einem Sektor der Wirtschaft zur anderen und sagt daher die Inputs vor, die zur Produktion von Outputs in einem anderen Sektor erforderlich sind 4. Simulationsmodellierung Es gibt zwei Aspekte von Prognosefehlern: Bias und Genauigkeit Bias - Eine Prognose ist voreingenommen, wenn sie mehr in eine Richtung als in der anderen Richtung irrt - die Methode neigt zu Unterprognosen oder Überprognosen. Genauigkeit - Prognosegenauigkeit bezieht sich auf die Entfernung der Prognosen von der tatsächlichen Nachfrage ignorieren die Richtung dieses Fehlers. Beispiel: Für sechs Perioden wurden die Prognosen und die tatsächliche Nachfrage nachverfolgt Die folgende Tabelle gibt die Ist-Nachfrage D t und die Prognose-Nachfrage F t für sechs Perioden an: kumulierte Summe der Prognosefehler (CFE) -20 mittlere absolute Abweichung (MAD) 170 6 28,33 mittlere quadriert Fehler (MSE) 5150 6 858.33 Standardabweichung der Prognosefehler 5150 6 29.30 Durchschnittlicher absoluter Prognosefehler (MAPE) 83.4 6 13.9 Welche Informationen prognostizieren prognostiziert, hat eine Tendenz zur Überschätzung der Nachfrage durchschnittlichen Fehler pro Prognose betrug 28,33 Einheiten oder 13,9 von Die tatsächliche Bedarfsabtastverteilung der Prognosefehler hat eine Standardabweichung von 29,3 Einheiten. KRITERIEN ZUR AUSWAHL EINES VORHABENMETHODES Ziele: 1. Maximieren Sie die Genauigkeit und 2. Minimieren Sie Vorspannungspotentialregeln für die Auswahl einer Zeitreihenvorhersagemethode. Wählen Sie die Methode aus, die mit dem kumulativen Vorhersagefehler (CFE) gemessen wird, oder gibt die kleinste mittlere absolute Abweichung (MAD) an oder gibt das kleinste Tracking-Signal oder unterstützt Management-Überzeugungen über das zugrunde liegende Bedarfsmuster oder andere. Es scheint offensichtlich, dass ein gewisses Maß an Genauigkeit und Bias zusammen verwendet werden sollte. Wie ist die Anzahl der zu untersuchenden Perioden, wenn die Nachfrage inhärent stabil ist, werden niedrige Werte von und und höhere Werte von N vorgeschlagen, wenn die Nachfrage inhärent instabil ist, werden hohe Werte von und und niedrigere Werte von N vorgeschlagen FOCUS FORECASTING quotfocus forecastingot bezieht sich auf Eine Annäherung zur Prognose, die Prognosen durch verschiedene Techniken entwickelt, dann wählt die Prognose aus, die durch den quotbestquot dieser Techniken produziert wurde, in denen quotbestquot durch irgendein Maß des Prognosefehlers bestimmt wird. FOKUSVORHERSAGE: BEISPIEL In den ersten sechs Monaten des Jahres betrug die Nachfrage nach einer Einzelhandelseinheit 15, 14, 15, 17, 19 und 18 Einheiten. Ein Händler nutzt ein Fokus-Prognosesystem, das auf zwei Prognosetechniken basiert: einem zweistufigen gleitenden Durchschnitt und einem trendgesteuerten exponentiellen Glättungsmodell mit 0,1 und 0,1. Bei dem exponentiellen Modell lag die Prognose für Januar bei 15 und das Trendmittel Ende Dezember war 1. Der Händler nutzt die mittlere absolute Abweichung (MAD) für die letzten drei Monate als Kriterium für die Auswahl des Modells, das zur Prognose verwendet wird Für den nächsten Monat. ein. Was wird die Prognose für Juli sein und welches Modell wird verwendet? Würden Sie auf Teil a antworten? Wenn die Nachfrage nach Mai 14 statt 19 gewesen wäre


Comments

Popular Posts